* Step 1: DependencyPairs WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict TRS:
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> if(le(x,s(y)),0(),p(minus(x,p(s(y)))))
            p(0()) -> 0()
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1} / {0/0,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if,le,minus,p} and constructors {0,false,s,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          if#(false(),x,y) -> c_1()
          if#(true(),x,y) -> c_2()
          le#(0(),y) -> c_3()
          le#(s(x),0()) -> c_4()
          le#(s(x),s(y)) -> c_5(le#(x,y))
          minus#(x,0()) -> c_6()
          minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y)))))
                               ,le#(x,s(y))
                               ,p#(minus(x,p(s(y))))
                               ,minus#(x,p(s(y)))
                               ,p#(s(y)))
          p#(0()) -> c_8()
          p#(s(x)) -> c_9()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: PredecessorEstimation WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            if#(false(),x,y) -> c_1()
            if#(true(),x,y) -> c_2()
            le#(0(),y) -> c_3()
            le#(s(x),0()) -> c_4()
            le#(s(x),s(y)) -> c_5(le#(x,y))
            minus#(x,0()) -> c_6()
            minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y)))))
                                 ,le#(x,s(y))
                                 ,p#(minus(x,p(s(y))))
                                 ,minus#(x,p(s(y)))
                                 ,p#(s(y)))
            p#(0()) -> c_8()
            p#(s(x)) -> c_9()
        - Weak TRS:
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> if(le(x,s(y)),0(),p(minus(x,p(s(y)))))
            p(0()) -> 0()
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/5,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,2,3,4,6,8,9}
        by application of
          Pre({1,2,3,4,6,8,9}) = {5,7}.
        Here rules are labelled as follows:
          1: if#(false(),x,y) -> c_1()
          2: if#(true(),x,y) -> c_2()
          3: le#(0(),y) -> c_3()
          4: le#(s(x),0()) -> c_4()
          5: le#(s(x),s(y)) -> c_5(le#(x,y))
          6: minus#(x,0()) -> c_6()
          7: minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y)))))
                                  ,le#(x,s(y))
                                  ,p#(minus(x,p(s(y))))
                                  ,minus#(x,p(s(y)))
                                  ,p#(s(y)))
          8: p#(0()) -> c_8()
          9: p#(s(x)) -> c_9()
* Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            le#(s(x),s(y)) -> c_5(le#(x,y))
            minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y)))))
                                 ,le#(x,s(y))
                                 ,p#(minus(x,p(s(y))))
                                 ,minus#(x,p(s(y)))
                                 ,p#(s(y)))
        - Weak DPs:
            if#(false(),x,y) -> c_1()
            if#(true(),x,y) -> c_2()
            le#(0(),y) -> c_3()
            le#(s(x),0()) -> c_4()
            minus#(x,0()) -> c_6()
            p#(0()) -> c_8()
            p#(s(x)) -> c_9()
        - Weak TRS:
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> if(le(x,s(y)),0(),p(minus(x,p(s(y)))))
            p(0()) -> 0()
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/5,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:le#(s(x),s(y)) -> c_5(le#(x,y))
             -->_1 le#(s(x),0()) -> c_4():6
             -->_1 le#(0(),y) -> c_3():5
             -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):1
          
          2:S:minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y)))))
                                   ,le#(x,s(y))
                                   ,p#(minus(x,p(s(y))))
                                   ,minus#(x,p(s(y)))
                                   ,p#(s(y)))
             -->_5 p#(s(x)) -> c_9():9
             -->_3 p#(s(x)) -> c_9():9
             -->_3 p#(0()) -> c_8():8
             -->_4 minus#(x,0()) -> c_6():7
             -->_2 le#(0(),y) -> c_3():5
             -->_1 if#(true(),x,y) -> c_2():4
             -->_1 if#(false(),x,y) -> c_1():3
             -->_4 minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y)))))
                                        ,le#(x,s(y))
                                        ,p#(minus(x,p(s(y))))
                                        ,minus#(x,p(s(y)))
                                        ,p#(s(y))):2
             -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):1
          
          3:W:if#(false(),x,y) -> c_1()
             
          
          4:W:if#(true(),x,y) -> c_2()
             
          
          5:W:le#(0(),y) -> c_3()
             
          
          6:W:le#(s(x),0()) -> c_4()
             
          
          7:W:minus#(x,0()) -> c_6()
             
          
          8:W:p#(0()) -> c_8()
             
          
          9:W:p#(s(x)) -> c_9()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: if#(false(),x,y) -> c_1()
          4: if#(true(),x,y) -> c_2()
          7: minus#(x,0()) -> c_6()
          8: p#(0()) -> c_8()
          9: p#(s(x)) -> c_9()
          5: le#(0(),y) -> c_3()
          6: le#(s(x),0()) -> c_4()
* Step 4: SimplifyRHS WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            le#(s(x),s(y)) -> c_5(le#(x,y))
            minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y)))))
                                 ,le#(x,s(y))
                                 ,p#(minus(x,p(s(y))))
                                 ,minus#(x,p(s(y)))
                                 ,p#(s(y)))
        - Weak TRS:
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> if(le(x,s(y)),0(),p(minus(x,p(s(y)))))
            p(0()) -> 0()
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/5,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:le#(s(x),s(y)) -> c_5(le#(x,y))
             -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):1
          
          2:S:minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y)))))
                                   ,le#(x,s(y))
                                   ,p#(minus(x,p(s(y))))
                                   ,minus#(x,p(s(y)))
                                   ,p#(s(y)))
             -->_4 minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y)))))
                                        ,le#(x,s(y))
                                        ,p#(minus(x,p(s(y))))
                                        ,minus#(x,p(s(y)))
                                        ,p#(s(y))):2
             -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
* Step 5: UsableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            le#(s(x),s(y)) -> c_5(le#(x,y))
            minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
        - Weak TRS:
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(x,s(y)) -> if(le(x,s(y)),0(),p(minus(x,p(s(y)))))
            p(0()) -> 0()
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/2,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          p(s(x)) -> x
          le#(s(x),s(y)) -> c_5(le#(x,y))
          minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
* Step 6: Decompose WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            le#(s(x),s(y)) -> c_5(le#(x,y))
            minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/2,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              le#(s(x),s(y)) -> c_5(le#(x,y))
          - Weak DPs:
              minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
          - Weak TRS:
              p(s(x)) -> x
          - Signature:
              {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
              ,c_6/0,c_7/2,c_8/0,c_9/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
        
        Problem (S)
          - Strict DPs:
              minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
          - Weak DPs:
              le#(s(x),s(y)) -> c_5(le#(x,y))
          - Weak TRS:
              p(s(x)) -> x
          - Signature:
              {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
              ,c_6/0,c_7/2,c_8/0,c_9/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
** Step 6.a:1: DecomposeDG WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            le#(s(x),s(y)) -> c_5(le#(x,y))
        - Weak DPs:
            minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/2,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
        and a lower component
          le#(s(x),s(y)) -> c_5(le#(x,y))
        Further, following extension rules are added to the lower component.
          minus#(x,s(y)) -> le#(x,s(y))
          minus#(x,s(y)) -> minus#(x,p(s(y)))
*** Step 6.a:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/2,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
          
        The strictly oriented rules are moved into the weak component.
**** Step 6.a:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/2,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_7) = {2}
        
        Following symbols are considered usable:
          {p,if#,le#,minus#,p#}
        TcT has computed the following interpretation:
               p(0) = [2]                          
                      [1]                          
                      [0]                          
           p(false) = [0]                          
                      [1]                          
                      [2]                          
              p(if) = [0 1 0]      [0 0 0]      [0]
                      [0 0 1] x1 + [0 2 1] x3 + [2]
                      [0 0 1]      [0 0 0]      [0]
              p(le) = [0 0 0]      [1]             
                      [0 0 0] x1 + [0]             
                      [1 1 0]      [0]             
           p(minus) = [0 0 0]      [0]             
                      [0 0 0] x2 + [2]             
                      [0 0 1]      [0]             
               p(p) = [1 3 2]      [3]             
                      [1 0 0] x1 + [0]             
                      [0 1 0]      [0]             
               p(s) = [1 2 0]      [0]             
                      [0 0 1] x1 + [0]             
                      [0 0 1]      [2]             
            p(true) = [2]                          
                      [0]                          
                      [0]                          
             p(if#) = [0 0 0]      [0 0 0]      [0]
                      [0 1 1] x2 + [0 0 0] x3 + [1]
                      [0 2 0]      [0 2 2]      [0]
             p(le#) = [0 3 0]      [1 1 0]      [0]
                      [0 0 0] x1 + [0 0 1] x2 + [1]
                      [0 0 0]      [0 0 1]      [2]
          p(minus#) = [1 0 0]      [0 0 2]      [1]
                      [0 3 0] x1 + [1 1 0] x2 + [0]
                      [0 3 2]      [1 0 1]      [0]
              p(p#) = [0 0 0]      [0]             
                      [0 0 0] x1 + [0]             
                      [2 0 0]      [0]             
             p(c_1) = [0]                          
                      [0]                          
                      [0]                          
             p(c_2) = [0]                          
                      [0]                          
                      [2]                          
             p(c_3) = [0]                          
                      [0]                          
                      [2]                          
             p(c_4) = [0]                          
                      [0]                          
                      [2]                          
             p(c_5) = [1]                          
                      [2]                          
                      [0]                          
             p(c_6) = [0]                          
                      [0]                          
                      [0]                          
             p(c_7) = [0 0 0]      [1 0 0]      [0]
                      [1 0 0] x1 + [0 0 0] x2 + [0]
                      [1 0 0]      [0 0 0]      [2]
             p(c_8) = [2]                          
                      [0]                          
                      [1]                          
             p(c_9) = [1]                          
                      [0]                          
                      [0]                          
        
        Following rules are strictly oriented:
        minus#(x,s(y)) = [1 0 0]     [0 0 2]     [5]       
                         [0 3 0] x + [1 2 1] y + [0]       
                         [0 3 2]     [1 2 1]     [2]       
                       > [1 0 0]     [0 0 2]     [1]       
                         [0 3 0] x + [1 2 1] y + [0]       
                         [0 3 0]     [1 2 1]     [2]       
                       = c_7(le#(x,s(y)),minus#(x,p(s(y))))
        
        
        Following rules are (at-least) weakly oriented:
        p(s(x)) =  [1 2 5]     [7]
                   [1 2 0] x + [0]
                   [0 0 1]     [0]
                >= [1 0 0]     [0]
                   [0 1 0] x + [0]
                   [0 0 1]     [0]
                =  x              
        
**** Step 6.a:1.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/2,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 6.a:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/2,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
             -->_2 minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
**** Step 6.a:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/2,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 6.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            le#(s(x),s(y)) -> c_5(le#(x,y))
        - Weak DPs:
            minus#(x,s(y)) -> le#(x,s(y))
            minus#(x,s(y)) -> minus#(x,p(s(y)))
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/2,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: le#(s(x),s(y)) -> c_5(le#(x,y))
          
        The strictly oriented rules are moved into the weak component.
**** Step 6.a:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            le#(s(x),s(y)) -> c_5(le#(x,y))
        - Weak DPs:
            minus#(x,s(y)) -> le#(x,s(y))
            minus#(x,s(y)) -> minus#(x,p(s(y)))
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/2,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_5) = {1}
        
        Following symbols are considered usable:
          {if#,le#,minus#,p#}
        TcT has computed the following interpretation:
               p(0) = [0]                  
           p(false) = [2]                  
              p(if) = [1] x1 + [1]         
              p(le) = [4] x2 + [1]         
           p(minus) = [1] x2 + [1]         
               p(p) = [2] x1 + [6]         
               p(s) = [1] x1 + [10]        
            p(true) = [0]                  
             p(if#) = [1] x2 + [1] x3 + [4]
             p(le#) = [2] x1 + [0]         
          p(minus#) = [8] x1 + [8]         
              p(p#) = [1]                  
             p(c_1) = [1]                  
             p(c_2) = [8]                  
             p(c_3) = [0]                  
             p(c_4) = [0]                  
             p(c_5) = [1] x1 + [6]         
             p(c_6) = [0]                  
             p(c_7) = [0]                  
             p(c_8) = [4]                  
             p(c_9) = [2]                  
        
        Following rules are strictly oriented:
        le#(s(x),s(y)) = [2] x + [20] 
                       > [2] x + [6]  
                       = c_5(le#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
        minus#(x,s(y)) =  [8] x + [8]      
                       >= [2] x + [0]      
                       =  le#(x,s(y))      
        
        minus#(x,s(y)) =  [8] x + [8]      
                       >= [8] x + [8]      
                       =  minus#(x,p(s(y)))
        
**** Step 6.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            le#(s(x),s(y)) -> c_5(le#(x,y))
            minus#(x,s(y)) -> le#(x,s(y))
            minus#(x,s(y)) -> minus#(x,p(s(y)))
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/2,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 6.a:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            le#(s(x),s(y)) -> c_5(le#(x,y))
            minus#(x,s(y)) -> le#(x,s(y))
            minus#(x,s(y)) -> minus#(x,p(s(y)))
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/2,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:le#(s(x),s(y)) -> c_5(le#(x,y))
             -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):1
          
          2:W:minus#(x,s(y)) -> le#(x,s(y))
             -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):1
          
          3:W:minus#(x,s(y)) -> minus#(x,p(s(y)))
             -->_1 minus#(x,s(y)) -> minus#(x,p(s(y))):3
             -->_1 minus#(x,s(y)) -> le#(x,s(y)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: minus#(x,s(y)) -> minus#(x,p(s(y)))
          2: minus#(x,s(y)) -> le#(x,s(y))
          1: le#(s(x),s(y)) -> c_5(le#(x,y))
**** Step 6.a:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/2,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

** Step 6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
        - Weak DPs:
            le#(s(x),s(y)) -> c_5(le#(x,y))
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/2,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
             -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):2
             -->_2 minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))):1
          
          2:W:le#(s(x),s(y)) -> c_5(le#(x,y))
             -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: le#(s(x),s(y)) -> c_5(le#(x,y))
** Step 6.b:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/2,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y))))
             -->_2 minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          minus#(x,s(y)) -> c_7(minus#(x,p(s(y))))
** Step 6.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            minus#(x,s(y)) -> c_7(minus#(x,p(s(y))))
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/1,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: minus#(x,s(y)) -> c_7(minus#(x,p(s(y))))
          
        The strictly oriented rules are moved into the weak component.
*** Step 6.b:3.a:1: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            minus#(x,s(y)) -> c_7(minus#(x,p(s(y))))
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/1,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_7) = {1}
        
        Following symbols are considered usable:
          {p,if#,le#,minus#,p#}
        TcT has computed the following interpretation:
               p(0) = [2]                                       
                      [0]                                       
                      [4]                                       
           p(false) = [1]                                       
                      [4]                                       
                      [0]                                       
              p(if) = [0 0 0]      [0 0 0]      [0 0 0]      [0]
                      [0 0 0] x1 + [0 0 0] x2 + [0 0 1] x3 + [1]
                      [1 1 0]      [0 0 1]      [4 1 0]      [1]
              p(le) = [0 0 0]      [0 0 0]      [4]             
                      [0 0 0] x1 + [1 2 0] x2 + [0]             
                      [0 0 1]      [1 0 0]      [0]             
           p(minus) = [1 1 0]      [1]                          
                      [0 1 0] x1 + [2]                          
                      [0 0 0]      [2]                          
               p(p) = [1 0 0]      [0]                          
                      [2 0 4] x1 + [1]                          
                      [0 1 0]      [0]                          
               p(s) = [1 2 2]      [1]                          
                      [0 0 1] x1 + [0]                          
                      [0 0 1]      [1]                          
            p(true) = [4]                                       
                      [1]                                       
                      [0]                                       
             p(if#) = [2 0 0]      [0 2 1]      [0]             
                      [1 0 0] x1 + [1 4 1] x3 + [0]             
                      [1 0 2]      [4 0 4]      [1]             
             p(le#) = [0 0 0]      [1 0 1]      [0]             
                      [0 1 1] x1 + [4 1 1] x2 + [1]             
                      [0 0 1]      [0 1 0]      [4]             
          p(minus#) = [0 0 0]      [4 0 4]      [5]             
                      [0 0 1] x1 + [4 0 4] x2 + [4]             
                      [1 0 0]      [4 0 0]      [0]             
              p(p#) = [0 2 0]      [1]                          
                      [4 0 1] x1 + [0]                          
                      [0 0 4]      [4]                          
             p(c_1) = [0]                                       
                      [2]                                       
                      [2]                                       
             p(c_2) = [2]                                       
                      [1]                                       
                      [0]                                       
             p(c_3) = [1]                                       
                      [0]                                       
                      [0]                                       
             p(c_4) = [4]                                       
                      [0]                                       
                      [2]                                       
             p(c_5) = [0 1 0]      [1]                          
                      [1 1 0] x1 + [0]                          
                      [2 2 4]      [0]                          
             p(c_6) = [0]                                       
                      [2]                                       
                      [1]                                       
             p(c_7) = [1 0 0]      [1]                          
                      [0 1 0] x1 + [2]                          
                      [0 0 0]      [2]                          
             p(c_8) = [1]                                       
                      [1]                                       
                      [2]                                       
             p(c_9) = [1]                                       
                      [0]                                       
                      [4]                                       
        
        Following rules are strictly oriented:
        minus#(x,s(y)) = [0 0 0]     [4 8 12]     [13]
                         [0 0 1] x + [4 8 12] y + [12]
                         [1 0 0]     [4 8  8]     [4] 
                       > [0 0 0]     [4 8 12]     [10]
                         [0 0 1] x + [4 8 12] y + [10]
                         [0 0 0]     [0 0  0]     [2] 
                       = c_7(minus#(x,p(s(y))))       
        
        
        Following rules are (at-least) weakly oriented:
        p(s(x)) =  [1 2 2]     [1]
                   [2 4 8] x + [7]
                   [0 0 1]     [0]
                >= [1 0 0]     [0]
                   [0 1 0] x + [0]
                   [0 0 1]     [0]
                =  x              
        
*** Step 6.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            minus#(x,s(y)) -> c_7(minus#(x,p(s(y))))
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/1,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 6.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            minus#(x,s(y)) -> c_7(minus#(x,p(s(y))))
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/1,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:minus#(x,s(y)) -> c_7(minus#(x,p(s(y))))
             -->_1 minus#(x,s(y)) -> c_7(minus#(x,p(s(y)))):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: minus#(x,s(y)) -> c_7(minus#(x,p(s(y))))
*** Step 6.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            p(s(x)) -> x
        - Signature:
            {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/1,c_8/0,c_9/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^3))