* Step 1: DependencyPairs WORST_CASE(?,O(n^3)) + Considered Problem: - Strict TRS: if(false(),x,y) -> y if(true(),x,y) -> x le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> if(le(x,s(y)),0(),p(minus(x,p(s(y))))) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {if,le,minus,p} and constructors {0,false,s,true} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs if#(false(),x,y) -> c_1() if#(true(),x,y) -> c_2() le#(0(),y) -> c_3() le#(s(x),0()) -> c_4() le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,0()) -> c_6() minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y))))) ,le#(x,s(y)) ,p#(minus(x,p(s(y)))) ,minus#(x,p(s(y))) ,p#(s(y))) p#(0()) -> c_8() p#(s(x)) -> c_9() Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: if#(false(),x,y) -> c_1() if#(true(),x,y) -> c_2() le#(0(),y) -> c_3() le#(s(x),0()) -> c_4() le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,0()) -> c_6() minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y))))) ,le#(x,s(y)) ,p#(minus(x,p(s(y)))) ,minus#(x,p(s(y))) ,p#(s(y))) p#(0()) -> c_8() p#(s(x)) -> c_9() - Weak TRS: if(false(),x,y) -> y if(true(),x,y) -> x le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> if(le(x,s(y)),0(),p(minus(x,p(s(y))))) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/5,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2,3,4,6,8,9} by application of Pre({1,2,3,4,6,8,9}) = {5,7}. Here rules are labelled as follows: 1: if#(false(),x,y) -> c_1() 2: if#(true(),x,y) -> c_2() 3: le#(0(),y) -> c_3() 4: le#(s(x),0()) -> c_4() 5: le#(s(x),s(y)) -> c_5(le#(x,y)) 6: minus#(x,0()) -> c_6() 7: minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y))))) ,le#(x,s(y)) ,p#(minus(x,p(s(y)))) ,minus#(x,p(s(y))) ,p#(s(y))) 8: p#(0()) -> c_8() 9: p#(s(x)) -> c_9() * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y))))) ,le#(x,s(y)) ,p#(minus(x,p(s(y)))) ,minus#(x,p(s(y))) ,p#(s(y))) - Weak DPs: if#(false(),x,y) -> c_1() if#(true(),x,y) -> c_2() le#(0(),y) -> c_3() le#(s(x),0()) -> c_4() minus#(x,0()) -> c_6() p#(0()) -> c_8() p#(s(x)) -> c_9() - Weak TRS: if(false(),x,y) -> y if(true(),x,y) -> x le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> if(le(x,s(y)),0(),p(minus(x,p(s(y))))) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/5,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:le#(s(x),s(y)) -> c_5(le#(x,y)) -->_1 le#(s(x),0()) -> c_4():6 -->_1 le#(0(),y) -> c_3():5 -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):1 2:S:minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y))))) ,le#(x,s(y)) ,p#(minus(x,p(s(y)))) ,minus#(x,p(s(y))) ,p#(s(y))) -->_5 p#(s(x)) -> c_9():9 -->_3 p#(s(x)) -> c_9():9 -->_3 p#(0()) -> c_8():8 -->_4 minus#(x,0()) -> c_6():7 -->_2 le#(0(),y) -> c_3():5 -->_1 if#(true(),x,y) -> c_2():4 -->_1 if#(false(),x,y) -> c_1():3 -->_4 minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y))))) ,le#(x,s(y)) ,p#(minus(x,p(s(y)))) ,minus#(x,p(s(y))) ,p#(s(y))):2 -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):1 3:W:if#(false(),x,y) -> c_1() 4:W:if#(true(),x,y) -> c_2() 5:W:le#(0(),y) -> c_3() 6:W:le#(s(x),0()) -> c_4() 7:W:minus#(x,0()) -> c_6() 8:W:p#(0()) -> c_8() 9:W:p#(s(x)) -> c_9() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: if#(false(),x,y) -> c_1() 4: if#(true(),x,y) -> c_2() 7: minus#(x,0()) -> c_6() 8: p#(0()) -> c_8() 9: p#(s(x)) -> c_9() 5: le#(0(),y) -> c_3() 6: le#(s(x),0()) -> c_4() * Step 4: SimplifyRHS WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y))))) ,le#(x,s(y)) ,p#(minus(x,p(s(y)))) ,minus#(x,p(s(y))) ,p#(s(y))) - Weak TRS: if(false(),x,y) -> y if(true(),x,y) -> x le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> if(le(x,s(y)),0(),p(minus(x,p(s(y))))) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/5,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:le#(s(x),s(y)) -> c_5(le#(x,y)) -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):1 2:S:minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y))))) ,le#(x,s(y)) ,p#(minus(x,p(s(y)))) ,minus#(x,p(s(y))) ,p#(s(y))) -->_4 minus#(x,s(y)) -> c_7(if#(le(x,s(y)),0(),p(minus(x,p(s(y))))) ,le#(x,s(y)) ,p#(minus(x,p(s(y)))) ,minus#(x,p(s(y))) ,p#(s(y))):2 -->_2 le#(s(x),s(y)) -> c_5(le#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) * Step 5: UsableRules WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) - Weak TRS: if(false(),x,y) -> y if(true(),x,y) -> x le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(x,s(y)) -> if(le(x,s(y)),0(),p(minus(x,p(s(y))))) p(0()) -> 0() p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/2,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: p(s(x)) -> x le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) * Step 6: Decompose WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/2,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: le#(s(x),s(y)) -> c_5(le#(x,y)) - Weak DPs: minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/2,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} Problem (S) - Strict DPs: minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) - Weak DPs: le#(s(x),s(y)) -> c_5(le#(x,y)) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/2,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} ** Step 6.a:1: DecomposeDG WORST_CASE(?,O(n^3)) + Considered Problem: - Strict DPs: le#(s(x),s(y)) -> c_5(le#(x,y)) - Weak DPs: minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/2,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) and a lower component le#(s(x),s(y)) -> c_5(le#(x,y)) Further, following extension rules are added to the lower component. minus#(x,s(y)) -> le#(x,s(y)) minus#(x,s(y)) -> minus#(x,p(s(y))) *** Step 6.a:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/2,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) The strictly oriented rules are moved into the weak component. **** Step 6.a:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/2,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_7) = {2} Following symbols are considered usable: {p,if#,le#,minus#,p#} TcT has computed the following interpretation: p(0) = [2] [1] [0] p(false) = [0] [1] [2] p(if) = [0 1 0] [0 0 0] [0] [0 0 1] x1 + [0 2 1] x3 + [2] [0 0 1] [0 0 0] [0] p(le) = [0 0 0] [1] [0 0 0] x1 + [0] [1 1 0] [0] p(minus) = [0 0 0] [0] [0 0 0] x2 + [2] [0 0 1] [0] p(p) = [1 3 2] [3] [1 0 0] x1 + [0] [0 1 0] [0] p(s) = [1 2 0] [0] [0 0 1] x1 + [0] [0 0 1] [2] p(true) = [2] [0] [0] p(if#) = [0 0 0] [0 0 0] [0] [0 1 1] x2 + [0 0 0] x3 + [1] [0 2 0] [0 2 2] [0] p(le#) = [0 3 0] [1 1 0] [0] [0 0 0] x1 + [0 0 1] x2 + [1] [0 0 0] [0 0 1] [2] p(minus#) = [1 0 0] [0 0 2] [1] [0 3 0] x1 + [1 1 0] x2 + [0] [0 3 2] [1 0 1] [0] p(p#) = [0 0 0] [0] [0 0 0] x1 + [0] [2 0 0] [0] p(c_1) = [0] [0] [0] p(c_2) = [0] [0] [2] p(c_3) = [0] [0] [2] p(c_4) = [0] [0] [2] p(c_5) = [1] [2] [0] p(c_6) = [0] [0] [0] p(c_7) = [0 0 0] [1 0 0] [0] [1 0 0] x1 + [0 0 0] x2 + [0] [1 0 0] [0 0 0] [2] p(c_8) = [2] [0] [1] p(c_9) = [1] [0] [0] Following rules are strictly oriented: minus#(x,s(y)) = [1 0 0] [0 0 2] [5] [0 3 0] x + [1 2 1] y + [0] [0 3 2] [1 2 1] [2] > [1 0 0] [0 0 2] [1] [0 3 0] x + [1 2 1] y + [0] [0 3 0] [1 2 1] [2] = c_7(le#(x,s(y)),minus#(x,p(s(y)))) Following rules are (at-least) weakly oriented: p(s(x)) = [1 2 5] [7] [1 2 0] x + [0] [0 0 1] [0] >= [1 0 0] [0] [0 1 0] x + [0] [0 0 1] [0] = x **** Step 6.a:1.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/2,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 6.a:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/2,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) -->_2 minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) **** Step 6.a:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/2,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 6.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: le#(s(x),s(y)) -> c_5(le#(x,y)) - Weak DPs: minus#(x,s(y)) -> le#(x,s(y)) minus#(x,s(y)) -> minus#(x,p(s(y))) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/2,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: le#(s(x),s(y)) -> c_5(le#(x,y)) The strictly oriented rules are moved into the weak component. **** Step 6.a:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: le#(s(x),s(y)) -> c_5(le#(x,y)) - Weak DPs: minus#(x,s(y)) -> le#(x,s(y)) minus#(x,s(y)) -> minus#(x,p(s(y))) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/2,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1} Following symbols are considered usable: {if#,le#,minus#,p#} TcT has computed the following interpretation: p(0) = [0] p(false) = [2] p(if) = [1] x1 + [1] p(le) = [4] x2 + [1] p(minus) = [1] x2 + [1] p(p) = [2] x1 + [6] p(s) = [1] x1 + [10] p(true) = [0] p(if#) = [1] x2 + [1] x3 + [4] p(le#) = [2] x1 + [0] p(minus#) = [8] x1 + [8] p(p#) = [1] p(c_1) = [1] p(c_2) = [8] p(c_3) = [0] p(c_4) = [0] p(c_5) = [1] x1 + [6] p(c_6) = [0] p(c_7) = [0] p(c_8) = [4] p(c_9) = [2] Following rules are strictly oriented: le#(s(x),s(y)) = [2] x + [20] > [2] x + [6] = c_5(le#(x,y)) Following rules are (at-least) weakly oriented: minus#(x,s(y)) = [8] x + [8] >= [2] x + [0] = le#(x,s(y)) minus#(x,s(y)) = [8] x + [8] >= [8] x + [8] = minus#(x,p(s(y))) **** Step 6.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,s(y)) -> le#(x,s(y)) minus#(x,s(y)) -> minus#(x,p(s(y))) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/2,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 6.a:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: le#(s(x),s(y)) -> c_5(le#(x,y)) minus#(x,s(y)) -> le#(x,s(y)) minus#(x,s(y)) -> minus#(x,p(s(y))) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/2,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:le#(s(x),s(y)) -> c_5(le#(x,y)) -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):1 2:W:minus#(x,s(y)) -> le#(x,s(y)) -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):1 3:W:minus#(x,s(y)) -> minus#(x,p(s(y))) -->_1 minus#(x,s(y)) -> minus#(x,p(s(y))):3 -->_1 minus#(x,s(y)) -> le#(x,s(y)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: minus#(x,s(y)) -> minus#(x,p(s(y))) 2: minus#(x,s(y)) -> le#(x,s(y)) 1: le#(s(x),s(y)) -> c_5(le#(x,y)) **** Step 6.a:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/2,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) - Weak DPs: le#(s(x),s(y)) -> c_5(le#(x,y)) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/2,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):2 -->_2 minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))):1 2:W:le#(s(x),s(y)) -> c_5(le#(x,y)) -->_1 le#(s(x),s(y)) -> c_5(le#(x,y)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: le#(s(x),s(y)) -> c_5(le#(x,y)) ** Step 6.b:2: SimplifyRHS WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/2,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))) -->_2 minus#(x,s(y)) -> c_7(le#(x,s(y)),minus#(x,p(s(y)))):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: minus#(x,s(y)) -> c_7(minus#(x,p(s(y)))) ** Step 6.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: minus#(x,s(y)) -> c_7(minus#(x,p(s(y)))) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/1,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: minus#(x,s(y)) -> c_7(minus#(x,p(s(y)))) The strictly oriented rules are moved into the weak component. *** Step 6.b:3.a:1: NaturalMI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: minus#(x,s(y)) -> c_7(minus#(x,p(s(y)))) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/1,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_7) = {1} Following symbols are considered usable: {p,if#,le#,minus#,p#} TcT has computed the following interpretation: p(0) = [2] [0] [4] p(false) = [1] [4] [0] p(if) = [0 0 0] [0 0 0] [0 0 0] [0] [0 0 0] x1 + [0 0 0] x2 + [0 0 1] x3 + [1] [1 1 0] [0 0 1] [4 1 0] [1] p(le) = [0 0 0] [0 0 0] [4] [0 0 0] x1 + [1 2 0] x2 + [0] [0 0 1] [1 0 0] [0] p(minus) = [1 1 0] [1] [0 1 0] x1 + [2] [0 0 0] [2] p(p) = [1 0 0] [0] [2 0 4] x1 + [1] [0 1 0] [0] p(s) = [1 2 2] [1] [0 0 1] x1 + [0] [0 0 1] [1] p(true) = [4] [1] [0] p(if#) = [2 0 0] [0 2 1] [0] [1 0 0] x1 + [1 4 1] x3 + [0] [1 0 2] [4 0 4] [1] p(le#) = [0 0 0] [1 0 1] [0] [0 1 1] x1 + [4 1 1] x2 + [1] [0 0 1] [0 1 0] [4] p(minus#) = [0 0 0] [4 0 4] [5] [0 0 1] x1 + [4 0 4] x2 + [4] [1 0 0] [4 0 0] [0] p(p#) = [0 2 0] [1] [4 0 1] x1 + [0] [0 0 4] [4] p(c_1) = [0] [2] [2] p(c_2) = [2] [1] [0] p(c_3) = [1] [0] [0] p(c_4) = [4] [0] [2] p(c_5) = [0 1 0] [1] [1 1 0] x1 + [0] [2 2 4] [0] p(c_6) = [0] [2] [1] p(c_7) = [1 0 0] [1] [0 1 0] x1 + [2] [0 0 0] [2] p(c_8) = [1] [1] [2] p(c_9) = [1] [0] [4] Following rules are strictly oriented: minus#(x,s(y)) = [0 0 0] [4 8 12] [13] [0 0 1] x + [4 8 12] y + [12] [1 0 0] [4 8 8] [4] > [0 0 0] [4 8 12] [10] [0 0 1] x + [4 8 12] y + [10] [0 0 0] [0 0 0] [2] = c_7(minus#(x,p(s(y)))) Following rules are (at-least) weakly oriented: p(s(x)) = [1 2 2] [1] [2 4 8] x + [7] [0 0 1] [0] >= [1 0 0] [0] [0 1 0] x + [0] [0 0 1] [0] = x *** Step 6.b:3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: minus#(x,s(y)) -> c_7(minus#(x,p(s(y)))) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/1,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 6.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: minus#(x,s(y)) -> c_7(minus#(x,p(s(y)))) - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/1,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:minus#(x,s(y)) -> c_7(minus#(x,p(s(y)))) -->_1 minus#(x,s(y)) -> c_7(minus#(x,p(s(y)))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: minus#(x,s(y)) -> c_7(minus#(x,p(s(y)))) *** Step 6.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: p(s(x)) -> x - Signature: {if/3,le/2,minus/2,p/1,if#/3,le#/2,minus#/2,p#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/1 ,c_6/0,c_7/1,c_8/0,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {if#,le#,minus#,p#} and constructors {0,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^3))